近日,中科院大連化物所李燦院士領(lǐng)導(dǎo)的研究團隊在太陽能制氫研究領(lǐng)域取得多項進展。不僅實現(xiàn)了2.5%的光催化體系世界最高太陽能制氫效率,同時還獲得了穩(wěn)定性最高的Ta3N5太陽能光電化學(xué)分解水體系,并在國際上首次提出光電催化空穴儲存層概念,為進一步設(shè)計構(gòu)筑高效穩(wěn)定的太陽能轉(zhuǎn)化體系提供了新的思路和策略。
利用取之不盡的太陽能作為制氫的一次能源是理想的能源發(fā)展方向。科學(xué)家們通過光催化和光電催化,利用太陽能把水分解為燃料電池所必需的氫和氧。然而,過去幾十年研究的光催化材料只能利用占太陽光總能量4%的紫外光,使太陽能制氫的廣泛應(yīng)用受到極大限制。如何發(fā)展穩(wěn)定的可見光光催化材料,使之能充分利用占太陽能總能量43%的可見光,成為太陽能分解水制氫技術(shù)的一個關(guān)鍵。
在國家自然科學(xué)基金重大項目和科技部“973”項目的資助下,通過多年的持續(xù)攻關(guān),李燦研究團隊在光催化和光電催化分解水的可見光研究中取得了重要進展。他們利用助催化劑修飾的BiVO4作為光陽極,在最小偏壓下實現(xiàn)了可見光驅(qū)動的全分解水反應(yīng)。并將BiVO4光陽極與硅疊層光陰極耦合,使太陽能制氫效率達到2.5%以上,這是目前該體系的世界最高效率。
在進行太陽能光催化分解水研究的同時,該團隊也啟動了太陽能光電催化分解水的研究。要提高太陽能制氫效率,必須發(fā)展寬光譜捕光的窄帶隙半導(dǎo)體光陽極,其中具有代表性的是窄帶隙半導(dǎo)體Ta3N5材料,其太陽能制氫理論效率可達15%以上,是目前國際太陽能光電催化制氫領(lǐng)域的主攻體系之一。
但這一體系易受光腐蝕,解決其穩(wěn)定性成為該領(lǐng)域的挑戰(zhàn)課題。在這項研究工作中,大化所科研人員在光陽極表面組裝水鐵石(Fh)層、保持光電催化水氧化高效率前提下,發(fā)現(xiàn)其體系穩(wěn)定性可由幾分鐘延長至數(shù)小時,甚至十余小時后也未見明顯衰退,這是目前世界上報道的穩(wěn)定性最高的Ta3N5分解水光陽極體系。
科研人員進一步探索發(fā)現(xiàn),Ta3N5表面Fh層具有電容的空穴儲存能力,可使半導(dǎo)體Ta3N5材料免于光腐蝕氧化,從而使光陽極的穩(wěn)定性數(shù)量級式提高。藉此,李燦院士領(lǐng)導(dǎo)的太陽能研究團隊在國際上提出了光電催化空穴儲存層概念,為進一步設(shè)計構(gòu)筑高效穩(wěn)定的太陽能轉(zhuǎn)化體系提供了新的思路和策略。
氫能“上位”,技術(shù)是前提
占世界能源供給90%的化石燃料在日益枯竭。同時,傳統(tǒng)化石能源作燃料造成的全球氣候變暖加速、空氣質(zhì)量下降、環(huán)境污染加劇等問題也在日益威脅著人類社會的生存與發(fā)展。作為一種清潔、高效和資源豐富的新能源,氫能成為未來最理想的能源。而實現(xiàn)氫的規(guī)模制備是發(fā)展氫能的前提和基礎(chǔ)。